EMR and endoscopic submucosal dissection (ESD) are widely used for removal of premalignant and malignant lesions of the GI tract.1-5 Currently used polypectomy snares and available ESD knives use electric energy for resection of GI tract lesions.4-6

SB Knives (Olympus America, Center Valley, Pa, USA) and the Clutch Cutter (Fujifilm, Tokyo, Japan) have recently become available in the United States.7-11 Although these devices have 2 branches and resemble scissors in appearance, their branches are not sharp and cannot mechanically cut tissues. Instead, both SB Knives and the Clutch Cutter use electric energy similarly to other available electrosurgical ESD knives.

Unfortunately, electric energy causes collateral damage to adjacent tissues, resulting in postprocedural pain, post-polypectomy syndrome, and delayed adverse events (tissue necrosis, bleeding, and perforation).12-17 To eliminate collateral tissue damage by electric current, previous publications have advocated the use of "cold" snares for removal of small colonic polyps.18-20

We describe colonic ESD with recently developed endoscopic monopolar scissors (Ensizor; Slater Endoscopy, Miami Lakes, Fl, USA), which uses "cold" tissue cutting instead of "hot" dissection with electric current.

A 63-year-old man was referred for endoscopic resection of a difficult (sessile, flat, Ila, Kudo IIIa, 20 mm) descending colon polyp that had been partially removed during

Figure 1. A sessile, flat (Ila, Kudo IIIa) descending colon polyp partially removed during previous colonic EMR.

Figure 2. A circumferential mechanical incision around the polyp started with endoscopic scissors.

Figure 3. The polyp is attached to the fore-balloon of the retraction device with endoscopic clip and pulled in an oral direction, exposing extensive fibrosis in the submucosal space. Endoscopic submucosal dissection was performed by cutting fibrotic tissue with scissors.
previous colonic EMR (Fig. 1; Video 1; available online at www.VideoGIE.org). After submucosal injection, a circumferential mechanical incision around the polyp was made with endoscopic scissors (Fig. 2). The polyp was attached to the fore-balloon of a DiLumen retraction device (Lumendi, Westport, Conn, USA) with an endoscopic clip (Resolution 360; Boston Scientific, Natick, Mass, USA). The fore-balloon was pushed in an oral direction, exposing extensive fibrosis in the submucosal space. ESD was performed by cutting the fibrotic tissue with scissors (Fig. 3), followed by placement of a second clip for additional traction.

Figure 4. Hemostasis during endoscopic submucosal dissection is achieved by use of the electrocautery function of the scissors. A, Active bleeding from a large submucosal vessel. B, Tip of the scissors is placed in contact with the bleeding vessel. C, Bleeding vessel is coagulated by the scissors. D, Bleeding is completely stopped after application of electrocautery through the scissors.

Figure 5. The polyp is removed en bloc.

Figure 6. Overstitch endoscopic suturing device is delivered to the endoscopic submucosal dissection site through the DiLumen retractor.
Hemostasis during ESD was achieved by touching the blood vessels with the tip of the monopolar scissors and using the electrosurgery function of the Ensizor scissors in soft coagulation mode (50 W, effect 2) (Fig. 4). The polyp was removed en bloc (Fig. 5), and the mucosal defect post lesion removal was closed with 1 continuous suture (Figs. 6 and 7) by use of the Overstitch endoscopic suturing device (Apollo Endosurgery, Austin, Tex, USA). The patient was discharged home after the procedure. Pathologic examination revealed tubular adenoma and confirmed R0 resection with negative margins.

In conclusion, newly designed endoscopic scissors allow ESD and effective endoscopic hemostasis. ESD with mechanical scissors instead of the currently used electrosurgical knives eliminates collateral damage of tissues adjacent to the plane of dissection, preserving the margins of the specimen for histologic assessment and preventing postprocedural pain, postpolypectomy syndrome, and delayed adverse events (tissue necrosis, bleeding, and perforation). The use of a traction device facilitates ESD and serves as a conduit for endoscopic suturing closure of large mucosal defects after lesion removal.

DISCLOSURE

Dr Kantsevoy is a consultant for Apollo Endosurgery, Aries, Endocages, LumenDi, Medtronic, Olympus, and Vizballoons; is a co-founder of Apollo Endosurgery and Endocages; is a shareholder in Apollo Endosurgery, Aries, Endocages, LumenDi, Medtronic, Olympus, and Vizballoons; is on LumenDi advisory board; is in active litigation with LumenR; and an equity holder in Endocages, LumenDi, Slater Endoscopy and Vizballoons. All other authors disclosed no financial relationships relevant to this publication.

ACKNOWLEDGEMENT

The authors would like to thank Slater Endoscopy (Miami Lakes, Fla, USA) for providing Ensizor endoscopic monopolar scissors for this procedure.

Abbreviation: ESD, endoscopic submucosal dissection.

REFERENCES

Institute for Digestive Health and Liver Diseases, Mercy Medical Center (1); University of Maryland School of Medicine (2), Baltimore, Maryland, USA.

If you would like to chat with an author of this article, you may contact Dr. Kantsevoy at skan51@hotmail.com.

Copyright © 2019 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).